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Given a polynomial p in d variables and of degree n we want to find the best
L2-approximation over a d-simplex from polynomials of degree m<n. This problem
is shown to be equivalent to the problem of finding the best Euclidean approxima-
tion of the Bernstein�Be� zier coefficients of p from the space of degree-raised
Bernstein�Be� zier coefficients of polynomials of degree m. � 2000 Academic Press

1. MOTIVATION

Polynomial degree reduction is widely used to exchange, convert, or
reduce data, or to compare geometric entities. As a classical, well-studied
topic, degree reduction in the L2 -norm should not yield any surprises. Yet
it was recently shown [8] that for univariate polynomials degree reduction
in the L2 -norm equals best Euclidean approximation of Be� zier coefficients.
This paper extends the result and analysis to the multivariate case: finding
a best L2 -approximation over the unit simplex from polynomials of degree
m to a given polynomial p of degree n>m is equivalent to finding the best
Euclidean approximation of Bernstein�Be� zier coefficients of p from the
space of Bernstein�Be� zier coefficients of polynomials of degree m raised to
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degree n. In other words, instead of comparing polynomials, we can find
the optimal lower degree approximants by just comparing control nets in
the Be� zier form.

From the rich literature on degree reduction we briefly and probably
incompletely review prior work in computer-aided geometric design and
approximation theory. For design, in the univariate case Lachance [7] and
Eck [2, 3] analyze Chebyshev economization, and Brunnett et al. [1]
investigate separability of degree reduction into the different spatial com-
ponents and the geometry of the control polygon. Endpoint constrained
L2 -approximation coupled with subdivision is discussed in [4] which also
contains a summary of earlier literature on economization. As a byproduct
of the proof we obtain an orthogonal basis for polynomials over the unit
simplex that may serve as an alternative to the orthogonal bases in power
form derived for cubature formulae in [5, 6, 10].

Throughout, we use bold greek letters for multi-indices. For d-dimen-
sional multi-indices :, ; # Nd

0 we define as usual

|:| :=:1+ } } } +:d , \n
:+ :=

n !
(n&|:| )! >d

i=1 : i !
, \:

;+ := `
d

i=1
\: i

;i+ .

For k=1, ..., d, the unit multi-index =k is given by =k
i =$ i, k . Identifying

multi-indices with points in Rd in the customary way, the unit d-simplex
2/Rd is defined as the convex hull of [0, =1, ..., =d]. The partial derivative
in the direction =i is denoted �i .

2. CHARACTERIZATION OF DEGREE-RAISED POLYNOMIALS

The linear space of polynomials of degree less than or equal to n is
denoted by Pn , where it is convenient to let P&1=[0]. We shall use two
different bases of Pn , namely the Bernstein�Be� zier (BB) basis and the
Lagrange basis with respect to the points [:: |:|�n]. The Bernstein
polynomials of degree n are defined by

Bn
: (x)=\n

:+ x: \1& :
d

i=1

xi+
n&|:|

, |:|�n,

while the Lagrange polynomials considered here are characterized by

Qn
: (;)=$:, ; , |:|, |;|�n.

We collect the basis functions in d-dimensional simplicial arrays of size n,

Bn :=[Bn
: ] |:|�n , Qn :=[Qn

: ] |:| �n ,
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and with b=[b: ] |:|�n a simplicial array of reals we write polynomials in
BB form and Lagrange form as

Bnb= :
|:| �n

Bn
:b: , Qnb= :

|:|�n

Qn
:b: ,

respectively. The Lagrange form is used to relate a discrete polynomial
dependence of the coefficients on the array index to a continuous polyno-
mial. For example, the coefficients b: =:1:2+: depend quadratically on
the multi-index :, and Q2(x) b=x1 x2+x2 is the corresponding quadratic
polynomial. The following lemma is well known.

Lemma 2.1. Polynomials of degree �m are characterized by

Bnb # Pm � Qnb # Pm .

Proof. Starting from the trivial case m=&1 we proceed by induction
and assume that the statement is correct for m&1. Since the mapping
Qnb � Bnb is an automorphism on pn , it suffices to show that x:=Qn(x) b
implies Bnb # Pm for all : with |:|=m. Defining the difference operator Di

by [Di b]; =[b];+=i&[b]; the binomial theorem yields Qn(x) Di b=
(x+=i):&x: # Pm&1 . From the differentiation formula for the BB form
and the induction hypothesis it follows that nBnD ib=�i Bnb # Pm&1 for all
i=1, ..., d. Hence, Bnb # Pm . K

3. EQUIVALENCE OF ORTHOGONAL COMPLEMENTS

Degree reduction is closely related to determining the orthogonal
complement of the approximation space with respect to the embedding
space.

Theorem 3.1. The orthogonal complements of Pm in Pn with respect to
the L2 -inner product

( f, g) L :=|
2

f (x) g(x) dx (1)

and the Euclidean inner product of the BB coefficients

(Bnb, Bnc)E := :
|:| �n

b:c: (2)

are equal.
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Proof. We denote the orthogonal complement of Pm in Pn with respect
to the Euclidean inner product by Pm, n , and let [Bnw:: m<|:|�n] be
some basis of this space. By equality of dimensions it suffices to show that
Pm, n is contained in the orthogonal complement with respect to the
L2 -inner product, i.e. the polynomials Bnw: have to be L2 -orthogonal to
all polynomials x; in Pm ,

(Bnw:, x;) L=0, 0�|;|�m<|:|�n.

Defining the simplicial array p; by

p;
: :=|

2
Bn

: (x) x; dx, |:|�n

we rewrite (Bnw:, x;) L=(Bnw:, Bnp;)E . By definition, the latter expres-
sion vanishes if and only if Bnp; # Pm , and by Lemma 2.1 this is equivalent
to Qnp; # Pm . In other words, we have to show that p;

: is polynomial in :
of degree �m for all ; with |;|�m. Using the formula �2 Bn:(x) dx=
n!�(n+d )!, this follows from

p;
: =

\n
:+

\n+|;|
:+; +

|
2

Bn+|;|
:+; (x) dx=

n !
(n+|;|+d )!

(:+;)!
: !

=
n !

(n+|;|+d )!
`
d

i=1

`
;i

r=1

(:+r). K

A basis Bnw: of Pm, n as used in the proof can be specified explicitly by

w:
; :=(&1) |;| \:

;+ , m<|:|�n, |;|�n.

In order to show this, we expand the polynomial Bnb into monomial form
with the aid of the multinomial theorem,

Bn(x) b= :
|:|�n

(Bnw:, Bnb) E (&1) |:| \n
:+ x:.

Hence, Bnb # Pm if and only if (Bnw:, Bnb) E=0 for all : with m<|:|�n.
As a consequence, we see that the polynomials [Bnw:: |:|=n] are of
Legendre type in the sense that they are L2 -orthogonal to all polynomials
of degree less than n on the unit simplex 2. This generalizes the well known

93BE� ZIER DEGREE REDUCTION



fact that for d=1 alternating binomial coefficients provide the BB form of
the Legendre polynomials over [0, 1] up to scaling [9].

4. DEGREE REDUCTION

Theorem 3.1 implies the promised result on degree reduction.

Corollary 4.1. Given a polynomial Bnb of degree n, the approximation
problem

min
p # Pm

&Bnb& p&

has the same minimizer for the norm induced either by the L2 -inner product
(1) or the Euclidean inner product (2).

Proof. The polynomial Bnb can be decomposed uniquely according to

Bnb= p+q, p # Pm , q # Pm, n .

Since Pm, n is the orthogonal complement with respect to both norms, p is
the minimizer in both norms. K

The following corollary affirms that the degree reduction process factors,
e.g. k-fold degree reduction by one yields the same best approximant as a
single reduction by k degrees. This is of interest, for example, when seeking
an approximant of least degree that still lies within a prescribed tolerance.

Corollary 4.2. Denote by Pm, n the linear operator mapping poly-
nomials Bnb # Pn to their best L2 or Euclidean approximant p # Pm . Then

Pm, n=Pm, lPl, n , m�l�n.

The factorization of degree reduction is well-known in the L2-case, non-
trivial to prove directly in the discrete Euclidean case, and in general false
in other norms, e.g. for Chebyshev approximation.

5. EUCLIDEAN DEGREE REDUCTION WORKS ON
GENERAL SIMPLICES

The discussion so far covered only degree reduction on the unit simplex 2.
Degree reduction on simplices of general, unstructured triangulations,
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and in particular a nondegenerate, affine image A(2) of 2 can be based on
change of variables

( f, g) L, A :=|
A(2)

f (x) g(x) dx

=|
2

f (A(x)) g(A(x)) |A| dx=|A| ( f b A, g b A) L .

However, equivalently and more efficiently, degree reduction in the
Euclidian norm applied to the vector of coefficients b of the polynomial
Bn

A b in Be� zier form defined on A(2) via the basis Bn
A :=Bn b A&1 yields

the same result as we will now show. By definition,

(Bn
Ac, Bn

Ab) E, A := :
|:|�n

c:b: =(Bnc, Bnb) E .

Hence for Bn
A b lying in the orthogonal complement of Pm in Pn with

respect to the L2 inner product on A(2)

0=(Bn
Ac, Bn

Ab) L, A for all Bn
Ac # Pm

� 0=(Bnc, Bnb) L for all Bnc # Pm

� 0=(Bnc, Bnb) E for all Bnc # Pm

� 0=(Bn
Ac, Bn

Ab) E, A for all Bn
Ac # Pm .

That is, the minimizers with respect to ( } , } )L, A and ( } , } ) E, A are the
same and one can work directly with the Be� zier coefficients corresponding
to the triangle A(2) rather than minimizing an integral over the triangle.

6. PRACTICAL CONSIDERATIONS AND AN EXAMPLE

In practice, one is often interested in the BB form p=Bmc of the best
degree reduction to the polynomial Bnb. In order to compare coefficients,
p has to be represented in terms of Bn, i.e., p=Bnc~ =BnAn, m c. The degree
raising operator An, m for mapping the BB coefficients c to c~ according to

c~ : = :
|;|�m

An, m(:, ;) c; , |:|�n

can be decomposed into elementary degree-raising steps as

An, m=An, n&1An&1, n&2 } } } Am+1, m ,
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where

Aj, j&1(:, ;)={
:i

j
if :=;+=i

1&
|:|
j

if :=;

0 else.

Simplicial arrays of size n in d dimensions can be identified with real
vectors with (n, d) :=( n+d

d ) elements using, e.g. lexicographic ordering for
the multi-indices. Accordingly, the operator An, m can be viewed as a
(n, d )_(m, d)-matrix. Then, with & }& denoting the Euclidean norm in
R(n, d ), degree reduction amounts to solving the least squares problem

min
c # R(m, d )

&b&Am, nc&.

The solution is given by the pseudo inverse Pm, n of the degree raising
matrix,

c=Pn, mb :=(At
m, nAm, n)&1 A t

m, nb.

From Corollary 4.2 it follows that Pm, n can be factored corresponding to
a sequence of elementary degree reduction steps,

Pm, n=Pm, m+1Pm+1, m+2 } } } Pn&1, n .

Hence, in order to get easy access to arbitrary degree reduction matrices,
it suffices to precompute the matrices Pk, k+1 ; the first few for d=2 are

7 3 &1 3 &1 &1

P0, 1= 1
3 [1 1 1], P1, 2= 1

10 _&1 3 7 &1 3 &1&&1 &1 &1 3 3 7

P2, 3= 1
70_

62 12 &8 2 12 &8 2 &8 2 2

& .

&13 47 47 &13 &8 22 &8 &3 &3 2

2 &8 12 62 2 &8 12 2 &8 2

&13 &8 &3 2 47 22 &3 47 &8 &13

2 &3 &8 &13 &3 22 47 &8 47 &13

2 2 2 2 &8 &8 &8 12 12 62
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We obtain for instance

5 3 1 &1 3 1 &1 1 &1 &1

P1, 3= 1
10 _&1 1 3 5 &1 1 3 &1 1 &1& .

&1 &1 &1 &1 1 1 1 3 3 5

As an example, consider the cubic polynomial B3b3 with BB coefficients
b3=[0, 1, &3, 1, 0, 2, &1, 1, &1, 1, &1, 0] t. The best approximating quad-
ratic B2b2 has coefficients b2=1�14[2, &11, 0, 21, &10, &2]t, while the
best approximating linear polynomial B1b1 to either B2b2 or B3b3 has
coefficients b1=1�5[2, &3; 1]t.
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